

Home Search Collections Journals About Contact us My IOPscience

Comment on 'Almost-periodic time observables for bound quantum systems'

This article has been downloaded from IOPscience. Please scroll down to see the full text article. 2009 J. Phys. A: Math. Theor. 42 018001 (http://iopscience.iop.org/1751-8121/42/1/018001) View the table of contents for this issue, or go to the journal homepage for more

Download details: IP Address: 171.66.16.153 The article was downloaded on 03/06/2010 at 07:31

Please note that terms and conditions apply.

J. Phys. A: Math. Theor. 42 (2009) 018001 (2pp)

doi:10.1088/1751-8113/42/1/018001

COMMENT

Comment on 'Almost-periodic time observables for bound quantum systems'

Eric A Galapon

Theoretical Physics Group, National Institute of Physics, University of the Philippines, Diliman Quezon City 1101, Philippines

E-mail: eric.galapon@up.edu.ph

Received 15 September 2008 Published 19 November 2008 Online at stacks.iop.org/JPhysA/42/018001

Abstract

Hall (2008 *J. Phys. A: Math. Theor.* **41** 255301) makes two claims on a time operator constructed in Galapon (2002 *Proc. R. Soc.* A **458** 2671). We discuss why both claims are wrong.

PACS number: 03.65.Ta

In [1], a time operator \hat{T} is constructed solely from the eigenvectors and eigenvalues of a given Hamiltonian \hat{H} . The Hamiltonian is assumed to have a discrete non-degenerate spectrum E_k with the corresponding eigenvectors $|E_k\rangle$, k = 1, 2, 3, ...; moreover, the Hamiltonian is semibounded from below such that $0 < E_1 < E_2 < E_3 < ...$, and the eigenvalues satisfy $\sum_{k=1}^{\infty} E_k^{-2} < \infty$. The $|E_k\rangle$'s form a complete set and span the entire Hilbert space \mathcal{H} , which allows us to write every vector in \mathcal{H} in the form $|\psi\rangle = \sum_{k=1}^{\infty} |E_k| |\psi\rangle |E_k\rangle$. The domain \mathcal{D}_H of the Hamiltonian \hat{H} consists of vectors $|\phi\rangle = \sum_{k=1}^{\infty} a_k |E_k\rangle$ such that $\sum_{k=1}^{\infty} E_k^2 |a_k|^2 < \infty$. The time operator \hat{T} is given by

$$\hat{T} = i\hbar \sum_{j \neq k} \frac{|E_j\rangle \langle E_k|}{E_j - E_k}.$$
(1)

The domain \mathcal{D}_T of \hat{T} consists of vectors of the form $|\varphi\rangle = \sum_{k=1}^{N} b_k |E_k\rangle$ for some finite but otherwise arbitrary positive integer N. The Hamiltonian eigenvectors $|E_k\rangle$ belong to \mathcal{D}_T ; this implies that \mathcal{D}_T is dense or \hat{T} is densely defined. The operators \hat{H} and \hat{T} satisfy the canonical commutation relation $[\hat{T}, \hat{H}]|\varphi\rangle = i\hbar|\varphi\rangle$ for all $|\varphi\rangle$ in \mathcal{D}_T such that $\sum_k b_k = 0$; these vectors comprise the subspace which we referred to as the canonical domain \mathcal{D}_c of \hat{H} and \hat{T} .

Now Hall claims that $[\hat{T}, \hat{H}]|E_k\rangle = 0$ for every k, and that \mathcal{D}_c is not dense. These claims are flagrantly erroneous.

To assert that $[\hat{T}, \hat{H}]|E_k\rangle = 0$ one implies that $|E_k\rangle$ belongs to the commutator domain of \hat{H} and \hat{T} , in particular, $|E_k\rangle$ belongs to the domain of $\hat{H}\hat{T}$. But $|E_k\rangle$ does not. Since $|E_k\rangle$ belongs to \mathcal{D}_T for all $|E_k\rangle$'s, we have

$$\hat{T}|E_k\rangle = \sum_{j \neq k} \frac{i\hbar}{(E_j - E_k)} |E_j\rangle,\tag{2}$$

1

1751-8113/09/018001+02\$30.00 © 2009 IOP Publishing Ltd Printed in the UK

and in order for $\hat{T}|E_k\rangle$ to belong to the domain of \hat{H} , it must be that $\sum_{j \neq k} E_j^2/(E_j - E_k)^2 < \infty$, which cannot be satisfied because $E_j^2/(E_j - E_k)^2 \rightarrow 1$ as $j \rightarrow \infty$ for a fixed k. Hence the expression $[\hat{T}, \hat{H}]|E_k\rangle$ does not make sense in the Hilbert space. This prevents us from arriving at the contradiction $\langle E_k | [\hat{T}, \hat{H}] | E_k \rangle = 0 = i\hbar \langle E_k | E_k \rangle$, which what Hall may be trying to say because we cannot have the equality $[\hat{T}, \hat{H}]|E_k\rangle = 0$, even formally.

Also to assert that \mathcal{D}_c is not dense one implies that there exists a vector $|\psi\rangle \neq \mathbf{0}$ in the Hilbert space \mathcal{H} that is orthogonal to all vectors in \mathcal{D}_c , that is, $\langle \psi | \varphi \rangle = 0$ for all $|\varphi\rangle$ in \mathcal{D}_c ; otherwise, \mathcal{D}_c is dense. To show that \mathcal{D}_c is dense, it is sufficient to demonstrate that \mathcal{D}_c itself has a dense subspace. Let \mathcal{D}'_c be the linear span of the vectors $|\psi_{m,n}\rangle = |E_m\rangle - |E_n\rangle$ for all positive integers m, n; \mathcal{D}'_c is clearly a subspace of \mathcal{D}_c . Now let $|\psi\rangle \neq 0$ be in \mathcal{H} and orthogonal to all $|\varphi\rangle$ in \mathcal{D}'_c . Then it must be that $\langle \psi_{m,n} | \psi \rangle = 0$, which implies the equality $\langle E_m | \psi \rangle = \langle E_n | \psi \rangle$ for all m, n. Since $|\psi\rangle \neq 0$ there is at least an $n = n_0$ such that $\langle E_{n_0} | \psi \rangle \neq 0$. Then $\langle E_k | \psi \rangle = \langle E_{n_0} | \psi \rangle$ for all k = 1, 2, ...; or $|\psi\rangle =$ $\sum_{k=1}^{\infty} \langle E_{n_0} | \psi \rangle | E_k \rangle = \langle E_{n_0} | \psi \rangle \sum_{k=1}^{\infty} | E_k \rangle$, which does not belong to \mathcal{H} . Then the only way for $|\psi\rangle$ to be simultaneously in \mathcal{H} and orthogonal to \mathcal{D}_c is for $|\psi\rangle = 0$. Hence \mathcal{D}_c is dense. Hall's 'proof' of the non-denseness of \mathcal{D}_c is a misunderstanding of the definition of a dense subspace.

References

[1] Galapon E A 2002 Proc. R. Soc. A 487 2671

[2] Hall M J W 2008 J. Phys. A: Math. Theor. 41 255301