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Abstract

Hall (2008 J. Phys. A: Math. Theor. 41 255301) makes two claims on a time
operator constructed in Galapon (2002 Proc. R. Soc. A 458 2671). We discuss
why both claims are wrong.

PACS number: 03.65.Ta

In [1], a time operator T̂ is constructed solely from the eigenvectors and eigenvalues of a given
Hamiltonian Ĥ . The Hamiltonian is assumed to have a discrete non-degenerate spectrum
Ek with the corresponding eigenvectors |Ek〉, k = 1, 2, 3, . . . ; moreover, the Hamiltonian is
semibounded from below such that 0 < E1 < E2 < E3 < . . . , and the eigenvalues satisfy∑∞

k=1 E−2
k < ∞. The |Ek〉’s form a complete set and span the entire Hilbert space H, which

allows us to write every vector in H in the form |ψ〉 = ∑∞
k=1 〈Ek|ψ〉|Ek〉. The domain DH

of the Hamiltonian Ĥ consists of vectors |φ〉 = ∑∞
k=1 ak|Ek〉 such that

∑∞
k=1 E2

k |ak|2 < ∞.
The time operator T̂ is given by

T̂ = ih̄
∑

j �=k

|Ej 〉〈Ek|
Ej − Ek

. (1)

The domain DT of T̂ consists of vectors of the form |ϕ〉 = ∑N
k=1 bk|Ek〉 for some finite but

otherwise arbitrary positive integer N. The Hamiltonian eigenvectors |Ek〉 belong to DT ; this
implies that DT is dense or T̂ is densely defined. The operators Ĥ and T̂ satisfy the canonical
commutation relation [T̂ , Ĥ ]|ϕ〉 = ih̄|ϕ〉 for all |ϕ〉 in DT such that

∑
k bk = 0; these vectors

comprise the subspace which we referred to as the canonical domain Dc of Ĥ and T̂ .
Now Hall claims that [T̂ , Ĥ ]|Ek〉 = 0 for every k, and that Dc is not dense. These claims

are flagrantly erroneous.
To assert that [T̂ , Ĥ ]|Ek〉 = 0 one implies that |Ek〉 belongs to the commutator domain

of Ĥ and T̂ , in particular, |Ek〉 belongs to the domain of Ĥ T̂ . But |Ek〉 does not. Since |Ek〉
belongs to DT for all |Ek〉’s, we have

T̂ |Ek〉 =
∑

j �=k

ih̄

(Ej − Ek)
|Ej 〉, (2)
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and in order for T̂ |Ek〉 to belong to the domain of Ĥ , it must be that
∑

j �=k E2
j /(Ej −Ek)

2 < ∞,
which cannot be satisfied because E2

j /(Ej − Ek)
2 → 1 as j → ∞ for a fixed k. Hence the

expression [T̂ , Ĥ ]|Ek〉 does not make sense in the Hilbert space. This prevents us from arriving
at the contradiction 〈Ek|[T̂ , Ĥ ]|Ek〉 = 0 = ih̄〈Ek|Ek〉, which what Hall may be trying to say
because we cannot have the equality [T̂ , Ĥ ]|Ek〉 = 0, even formally.

Also to assert that Dc is not dense one implies that there exists a vector |ψ〉 �= 0 in
the Hilbert space H that is orthogonal to all vectors in Dc, that is, 〈ψ |ϕ〉 = 0 for all |ϕ〉 in
Dc; otherwise, Dc is dense. To show that Dc is dense, it is sufficient to demonstrate that Dc

itself has a dense subspace. Let D′
c be the linear span of the vectors |ψm,n〉 = |Em〉 − |En〉

for all positive integers m, n; D′
c is clearly a subspace of Dc. Now let |ψ〉 �= 0 be in

H and orthogonal to all |ϕ〉 in D′
c. Then it must be that 〈ψm,n|ψ〉 = 0, which implies

the equality 〈Em|ψ〉 = 〈En|ψ〉 for all m, n. Since |ψ〉 �= 0 there is at least an n = n0

such that 〈En0 |ψ〉 �= 0. Then 〈Ek|ψ〉 = 〈En0 |ψ〉 for all k = 1, 2, . . . ; or |ψ〉 =∑∞
k=1 〈En0 |ψ〉|Ek〉 = 〈En0 |ψ〉∑∞

k=1 |Ek〉, which does not belong to H. Then the only way
for |ψ〉 to be simultaneously in H and orthogonal to Dc is for |ψ〉 = 0. Hence Dc is dense.
Hall’s ‘proof’ of the non-denseness of Dc is a misunderstanding of the definition of a dense
subspace.
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